HALLUX RIGIDUS

Nikolaus WULKER*

INTRODUCTION
The term hallux rigidus describes painful and decreased motion at the metatarsophalangeal joint of the great toe. This causes discomfort particularly when the toe is dorsiflexed at push-off during ambulation. Most commonly, degenerative arthritis of the metatarsophalangeal joint is the underlying condition. However, other disorders such as osteochondrosis dissecans of the first metatarsal head may also cause hallux rigidus.

The clinical condition of hallux rigidus was first described by Nicoladoni in 1881 and by Davies-Colley. The term "hallux rigidus" was introduced by Cotterill. "Hallux limitus" has also been used to describe painful limitation of dorsiflexion of the great toe, in particular if this is less advanced. Other terms for the same condition are hallux arthriticus and hallux equinus.

Hallux rigidus is slightly more common in women than in men, in particular at a younger age. Hallux rigidus often occurs bilaterally, particularly in younger patients.

CLINICAL AND RADIOGRAPHIC APPEARANCE

Stage I
Patients complain of impaired push-off of the great toe when walking. Clinical findings at this stage may be non-specific. Motion may be painful in all directions. Patients avoid the great toe during gait and walk over the lateral border of the foot. Radiographs at this stage usually reveal no abnormality, except for occasional flattening of the first metatarsal head.

Stage II
Degenerative arthritis initiates at the dorsal segment of the first metatarsophalangeal joint, where mechanical stress is most pronounced. On physical examination, dorsiflexion is markedly decreased or absent. Crepitus at the first metatarsophalangeal joint may be palpable on forced dorsiflexion. An osteophyte is often palpable at the dorsal surface of the first metatarsal head and sometimes at the proximal phalanx. Dorsoplantar radiographs at this stage reveal joint space narrowing and subchondral bone density (Fig. 1a). Osteophytes at the lateral and medial border of the joint may be seen. Lateral radiographs demonstrate joint space narrowing (Fig. 1b), which is often limited to the dorsal portion of the joint, with normal or only slightly decreased width of the plantar joint space.

Figure 1a: Stage II hallux rigidus: a) The dorsoplantar radiograph demonstrates joint space narrowing with osteophyte formation at the lateral and medial aspect of the first metatarsal head.

* From the Orthopaedic Department, Hannover Medical School, Hannover, Germany.
Stage III
Degenerative arthritis of the first metatarsophalangeal joint has fully developed. Metatarsophalangeal joint motion is further decreased, at times with a plantarflexion contracture of the great toe. Crepitus is often found. A large osteophyte can usually be palpated at the dorsal aspect of the first metatarsal head, which may lead to pressure against the shoe and give raise to the clinical appearance of a dorsal bunion. Radiographs reveal advanced degenerative arthritis of the first metatarsophalangeal joint with complete obliteration of the joint space, including the dorsal segment (Fig. 2a,b). A large osteophyte at the dorsal surface of the first metatarsal head may fracture and remain as a loose fragment.

NONOPERATIVE TREATMENT
In the early stage of hallux rigidus, conservative treatment to decrease inflammation often yields pain relief for extended periods. Cold treatment with ice packs and sprays may be used. Topical analgesic medication may markedly diminish pain and inflammation. Other physical therapy applications, such as high frequency electric field treatment and ultrasound may also be used. If symptoms are more severe intraarticular injection treatment may be helpful.
Rehabilitation exercises are not usually helpful in hallux rigidus. Motion exercises are generally not able to overcome the limitation of dorsiflexion, and symptoms may be worsened, if a forceful attempt to restore a normal range of motion at the metatarsophalangeal joint is made.
Insoles with an in-built metal bar underneath the great toe absorb some of the energy at the
metatarsophalangeal joint during push-off. Transverse metatarsal bars, built into the sole under the metatarsal head region, decrease the load at the metatarsophalangeal joint.

SURGICAL TREATMENT OF HALLUX RIGIDUS

Hallux rigidus patients differ with respect to their age, their activities of daily living and with respect to their expectations from the operative intervention. Not one single procedure is suited for all patients. A decision making process is required to select the optimum treatment for each individual patient.

For the intermediate stage of hallux rigidus, cheilectomy is a relatively non-invasive surgical procedure that offers a high rate of success. Its major advantage is the fact that arthrodesis of the first metatarsophalangeal joint or resection arthroplasty are still possible, should they become necessary at a later time. In the experience of the author, other joint preserving procedures for the treatment of hallux rigidus, such as the dorsiflexion osteotomy of the proximal phalanx,9,16,45, are technically more difficult and have a higher incidence of complications, but are no more successful than cheilectomy. Dorsiflexion osteotomy, however, may be used in addition to cheilectomy.

In the late stage of hallux rigidus, operative techniques that preserve the metatarsophalangeal joint are no longer successful. Arthrodesis and occasionally resection arthroplasty of the first metatarsophalangeal joint are the treatment of choice. Arthrodesis allows the great toe to be fitted into regular shoes and to be used during push-off, without interfering during ambulation. Arthrodesis is the more functional procedure, compared to resection arthroplasty of the first metatarsophalangeal joint. In elderly and less active patient, resection arthroplasty may be used as an alternative.

Resection arthroplasty of the proximal phalanx has often been the preferred treatment for all stages and variants of hallux rigidus in Europe. As a joint destructive procedure, which permanently and severely compromises the function of the great toe, resection arthroplasty is indicated only in the exceptional hallux rigidus patient. Other techniques are much better suited to restore painfree function of the great toe on a long-term basis.

Regnauld17 used a resection arthroplasty to treat hallux rigidus, in which the base of the proximal phalanx was shaped as a peg and fitted into the caved out diaphysis of that bone. In view of a recurrence rate of up to 80 percent,18 this technique can not generally be recommended. Subcapital dorsiflexion osteotomy of the first metatarsal has also been recommended19,21, but this is technically more difficult than cheilectomy or osteotomy of the proximal phalanx. Removal of osteophytes alone for the treatment of hallux rigidus22,23 does not usually obtain long-term relief of symptoms.

Arthrodesis of the first tarsometatarsal joint was used by several authors who considered metatarsus primus elevatus, i.e. dorsiflexion deformity of the first metatarsal, the main aetiology of hallux rigidus19,24,25. However, no proof of this aetiology exists and the sacrifice of a health joint is usually not warranted.

Of historical interest are the remodelling arthroplasty12,26,27, using fascia lata to cover the surfaces of the metatarsophalangeal joint, and closed manipulation of the great toe under anaesthesia1,7,12,28,29. Plantar soft tissue release2,28,30, including transection of the short flexor muscles of the hallux and the plantar aspect of the joint capsule, is not usually successful to relieve long-term symptoms.

Endoprosthetic replacement of the first metatarsophalangeal joint has been more successful in hallux rigidus than in hallux valgus.6,31,32 However, the complication rate in hallux rigidus is still considerable6-32. Silastic implants, which were initially developed by Swanson33, are now used less frequently, after foreign body reactions, osteophyte formation, periarticular ossifications and new bone formation at the resection surfaces have increasingly been reported32,34,35. In the experience of the author, the results of cheilectomy and of arthrodesis of the first metatarsophalangeal joint are more favourable than those endoprosthetic replacement in hallux rigidus.

The most important contraindication to hallux rigidus surgery is compromised peripheral vascular perfusion. Palpation of both pedal pulses is mandatory before the operation.

CHEILECTOMY

Cheilectomy was first described by DuVries4 and subsequently recommended in particular by Mann and Clanton36. This technique is only indicated in the intermediate stage of hallux rigidus, i.e. if
sufficient articular cartilage are still intact at the first metatarsal head and of the proximal phalanx. It does not obstruct subsequent arthrodesis or resection arthroplasty of the first metatarsophalangeal joint, should they become necessary at a later time.

Operative Technique

The incision is centred dorsally over the metatarsophalangeal joint and can be carried directly onto the bone, dividing the periosteum and the joint capsule. The first metatarsal head and the base of the proximal phalanx are exposed. The joint cartilage is examined following forced plantarflexion of the great toe. Most commonly, there will be worn cartilage at the dorsal aspect of the first metatarsal head and better preserved cartilage on the plantar side, usually the plantar two thirds of the head (Fig. 3a). Dorsally and occasionally laterally and medially, an osteophyte is often found. Sometimes, loose bodies within the joint must be removed. Synovectomy at the exposed portion of the joint may have to be performed prior to bone resection.

Cheilectomy is performed with a small osteotome. The osteotomy begins at the dorsal surface of the first metatarsal head, proximal to an osteophyte which may be present, and is directed to the dorsal margin of the intact articular surface at the first metatarsal head (Fig. 4). Generally, the osteotomy is angled slightly in a plantar direction to the dorsal aspect of the first metatarsal diaphysis (Fig. 5). Approximately the dorsal one third of the first metatarsal head is removed (Fig. 3b). If more bone is resected, the first metatarsophalangeal joint may become unstable. If not enough bone is resected, there may still be painful bone contact, leading to continuing symptoms and to recurrence of hallux rigidus. Additional osteophytes at the medial and lateral aspect of the first metatarsal head and at the base of the proximal phalanx are also removed. Following bone resection, a periosteal elevator is used to divide adhesions between the sesamoids and the first metatarsal head. Following this maneuver, the great toe must be brought into approximately 60 degrees of dorsiflexion. If this

Figure 3a: Prior to cheilectomy, the preserved articular cartilage at the plantar segment of the first metatarsal head is clearly demarcated from the eburnated subchondral bone surface at the dorsal aspect.

Figure 3b: Resection surface following cheilectomy.
Four patients complained of pain after extended weight-bearing. Mean dorsiflexion of the first metatarsophalangeal joint increased from 12° preoperatively to 25° postoperatively. Dynamic pedobarography revealed an almost complete return of normal weight-bearing of the great toe.

Mann et al.38 reported minor residual symptoms in three of 20 patients 68 months (seven to 156 months) postoperatively. Mean dorsiflexion at the metatarsophalangeal joint was 30 degrees. Gould39 found 20 degrees or more of dorsiflexion in twelve patients two to four years following cheilectomy, with an average of 32 degrees. All patients were able to return to their activities prior to the onset of symptoms and all were able to wear normal shoes. Hattrup and Johnson40 followed 58 feet after 38 months (eight to 97 months). In early degeneration with small to medium size osteophytes and with a largely preserved width of the joint space, 85 percent of all patients were satisfied with the result. Mann and Clanton45 examined 25 patients after 56 months (30 to 100 months). All except three were asymptomatic. Joint motion increased 20 degrees on average. No complications occurred.

ARTHRODESIS OF THE FIRST METATARSOPHALANGEAL JOINT

The first description of metatarsophalangeal joint fusion was by Broca in 185241. Clutton42 recommended this technique in 1894 and reported a successful outcome in seven patients. Today, arthrodesis of the first metatarsophalangeal joint is the standard procedure for hallux rigidus with advanced destruction of the joint surfaces.

Operative Technique

The skin incision is midline at the dorsal aspect of the metatarsophalangeal joint. If the arthrodesis is stabilised with a dorsal plate, the incision reaches distally to the interphalangeal joint and for the same distance in a proximal direction. The incision can be carried through the periosteum and the capsule directly onto the bone. Osteophytes, which are commonly found at the first metatarsal head and at the proximal phalanx, are removed.

Position of the Arthrodesis

Following the arthrodesis, the great toe must be in a position to allow weightbearing at push-off during gait and to fit comfortably into a regular shoe. This requires ten to 15 degrees of dorsiflexion.
relative to the sole of the foot, i.e. relative to the ground when walking (Fig. 6a). In women who wear high heeled shoes, the angle can be increased to 20 degrees. This dorsiflexion angle is smaller than the angle between the first metatarsal and the proximal phalanx, which is between 15 and 30 degrees. In addition one must take into consideration that the proximal phalanx is thicker at its proximal metaphysis than at the diaphysis.

In a correct position of the arthrodesis, the angle between the dorsal surfaces of the first metatarsal and of the proximal phalanx is between zero and 10 degrees of dorsiflexion. The medial-lateral alignment of the great toe should be in 10 degrees of valgus, so that the great toe just touches the second toe (Fig. 6b).

The proximal osteotomy is made with an oscillating saw at a valgus angle of 10 degrees to the shaft axis of the first metatarsal. In the sagittal plane, it should be at a right angle to the bottom of the foot. Just enough bone is resected to obtain a flat surface of adequate size and to reach the cancellous bone of the first metatarsal head. If too much bone is resected, the great toe will be excessively shortened by the operation.

The surgeon then holds the great toe with one hand and places it in the position desired for the arthrodesis. The osteotomy at the proximal phalanx is made parallel to the osteotomy at the first metatarsal head. The arthrodesis is then temporarily stabilised with Kirschner wires, which must not interfere with the screws used for subsequent fixation.

Cone shaped bone surfaces were used by a number of authors43-49. This configuration adds to the stability of the arthrodesis but shortens the great toe. Wedge-shaped osteotomies were employed by Geiser50 and by Harrison and Harvey51. Turan and Lindgren52 recommended flat osteotomy surfaces tilted 30 degrees into a lateral-proximal direction, to facilitate internal fixation with screws. Coughlin53 and Holmes54 introduced cup-shaped power-driven reamers for convex reaming of the first metatarsal head and concave reaming of the base of the proximal phalanx. Bone resection is minimal, because the curvature of the reamers approximately corresponded to the natural shape of the articular surfaces.

Fixation of the arthrodesis

The most stable method of fixation is a dorsal one-third or one-quarter tubular small fragment plate, with additional interfragmentary screw fixation (Fig. 7)52,53. The dorsal surface of the first metatarsal and the proximal phalanx are cleared of soft tissue. In the correct position of the arthrodesis, the plate has to be bent dorsally less than 10 degrees. This should be slightly less than the angle between the dorsal surfaces of the first metatarsal and the proximal phalanx, as this provides additional compression at the plantar side of the arthrodesis. Four or five hole one third or one quarter tubular plates or other small plates are equally well suited for fixation. Following removal of the temporary Kirschner wires, an
configuration of the bone surfaces provides some inherent stability, as in the cone or wedge shaped arthrodesis. McKeeveg and Lipscomb used a relatively long screw, which entered at the plantar surface of the proximal phalanx and reached almost to the first tarsometatarsal joint.

Other methods of stabilisation include external fixation, Steinmann pins or Rush nails, Kirschner wires, wire sutures, absorbable sutures, bone pegs and bone staples.

The wound is closed in two layers, in order to provide adequate soft tissue coverage. The skin is closed with interrupted sutures.

Postoperatively, the patient can be mobilised in a rigid postoperative shoe with full weightbearing immediately postoperatively, if dorsal plate fixation was used. The sutures are removed 14 days postoperatively. The postoperative shoe is used until six weeks after the operation. The metal implants may be removed after one year. In fixation with screws alone, temporary immobilization may be advised in view of the higher rate of nonunion with this technique.

Results

Henry and Waugh performed plantar pressure measurements in 85 arthrodeses and compared the results to 85 patients following resection arthroplasty. In 80 percent of the arthrodeses, the great toe was put to use during push-off, compared to 40 patients following resection arthroplasty. An increased load under the second to fourth metatarsal heads was measured in 66 percent of the arthrodeses and 78 percent of the resection arthroplasties.

Geiser reported 116 arthrodeses in 89 patients one to eleven years postoperatively. Most procedures were performed for hallux rigidus. The result was good and excellent in over 90 percent, only six patients were unsatisfied with the operation. In six patients, the arthrodesis was in an unfavourable position. Ten patients underwent simultaneous resection arthroplasty at the contralateral side. Of these, four patients favoured the arthrodesis, five were undecided and one patient favoured the resection arthroplasty.

Salis-Soglio and Gebler-Rothlaender examined 95 arthrodeses with dorsal plate fixation in 76 patients after 38 months. 79 patients had an excellent and good subjective result, 14 percent
fair and seven percent poor. 70 percent of all patients active in sports could return to their previous athletic activity. Complications occurred in eleven percent, such as delayed wound healing, persistent swelling or venous thrombosis.

Complications

The incidence of pseudarthrosis depends on the method of fixation. Moynihan, who used only one screw, reported a rate of 13 percent. Chana et al., who used only absorbable sutures, reported ten percent. If a dorsal plate was used, the incidence of pseudarthrosis was between zero and six percent. Most pseudarthroses cause only mild symptoms and do not require revision. Degenerative arthritis of the interphalangeal joint was observed radiographically in 25 percent of arthrodeses twelve years postoperatively, 15 percent without symptoms and ten percent with symptoms. Coughlin reported an increase of symptoms at the interphalangeal joint with increasing time postoperatively. Salis-Soglio found no evidence of degeneration in 250 patients, more than three years on average after surgery.

REFERENCES