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Osteochondral lesion of the talus (OLT) is a common 
disorder that causes chronic ankle pain, swelling, 
mechanical symptoms, and functional limitation.[1] 
Small or medium-sized lesions usually benefit from 
arthroscopic procedures, such as debridement and 
microfracture; however, in large (>150 mm2), cystic 
and high-grade lesions, the long-term outcomes have 
been shown to worsen with unacceptable failure 
rates with arthroscopic microfractures.[2,3] Therefore, 
cartilage restorative procedures, including autologous 
osteochondral grafting, autologous chondrocyte 
implantation (ACI), autologous matrix-induced 

Objectives: The aim of this study was to investigate the effect 
of cartilage thickness mismatch on tibiotalar articular contact 
pressure in osteochondral grafting from femoral condyles to 
medial talar dome using a finite element analysis (FEA).
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loaded during a single-leg stance phase of gait. Tibiotalar contact 
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chondrogenesis (AMIC), particulated juvenile cartilage 
allograft, or osteochondral allograft transplantation, 
have been advocated for large OLTs.[4-6]

Among these treatment options, autologous 
osteochondral grafting has been shown to be safe and 
effective with successful clinical results in primary 
or revision cases.[5] This technique has various 
advantages. First, it is a single-stage procedure and 
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can be performed with simple surgical equipment. 
Second, and most importantly, the hyaline cartilage 
is directly transferred to the defective area, 
independent of the healing capacity of the recipient 
site. Third, both the cartilage and the underlying 
subchondral and cancellous bone are simultaneously 
substituted, which is a critical advantage in the 
presence of subchondral cyst formation and bony 
defect.[1,4,5]

Finite element analysis (FEA) can help us to 
understand biomechanics better, select optimal 
choices, and make clinical decisions. It can be 
used as a powerful non-invasive tool to evaluate 
the biomechanical properties of prior and novel 
techniques and to simulate surgical procedures for 
clinical cases. It can be also used as an alternative to 
studies that expensive, require specialized devices 
for its implementation, and ethically sensitive 
animals or cadavers.[7] The FEA can potentially 
mimic cartilage morphology using mesh elements 
(tetrahedral, hexahedral), material properties (elastic, 
hyperelastic, poroelastic, composite), physiological 
loads by applying loading conditions (static, dynamic), 
and constitutive stress-strain equations (linear, 
porous-elastic, biphasic).[8]

Previous studies have shown that elevated, 
recessed, or angled osteochondral plugs significantly 
deteriorate the joint contact pressures.[9-11] Besides, it 
is well-known that articular cartilage thickness is 
subject to variations between joints. Furthermore, 
it is not even uniform within the same joint.[12-15] 
Therefore, even with flush placement of osteochondral 
plugs with a thicker cartilage, it may result in a 
subchondral bone surface mismatch (Figure 1).[16] 

Theoretically, cartilage thickness mismatch may 
adversely affect the joint contact pressures. However, 
cartilage thickness mismatch between donor and 
recipient sites has not been well-studied previously 
and still remains unclear. In light of the existing 
data, in the present study, we aimed to investigate 
the cartilage thickness mismatch on the tibiotalar 
contact pressure from knee to talus autologous 
osteochondral grafting using FEA.

MATERIALS AND METHODS

The FEA was carried out in linear static loading 
conditions and assumptions of a homogeneous 
isotropic linear elastic material model. The non-linear 
contact between components of the model was also 
defined. Osteochondral autografting was performed 
on the centromedial aspect of the talar dome using 
osteochondral plugs with two different cartilage 
thicknesses. Since OLTs are most frequently seen in 
the centromedial region,[17] this area was chosen for 
simulations. One of the plugs had an equal cartilage 
thickness with the recipient talar cartilage and the 
second plug had a thicker cartilage representing a 
plug harvested from the knee. An intact tibiotalar 
joint and an empty socket were also simulated as 
control operations.

Modeling of the ankle joint and osteochondral 
grafting

To construct a realistic digital model, an intact 
ankle joint was modeled based on computed 
tomography (CT) data of a healthy male individual 
who was 184 cm in height and 98 kg in weight. The CT 
examination (Siemens go.Up, Siemens Healthineers 
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FIGURE 1. (a) Intraoperative appearance of two osteochondral grafts harvested from lateral femoral condyles. Note flush 
placement of plugs with talar articular surface. (b) Coronal and (c) sagittal CT of talus showing subchondral surface mismatch. 
(d, e) Three-dimensional CT images showing the subchondral surface irregularity. (f) Schematic drawing showing differences 
between equal cartilage thickness and mismatch.
CT: Computed tomography.
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FIGURE 2. (a) Localization of plugs on talar articular surface. (b) Thickness of cartilage in plug 
A and B was 1.5 mm and 2.5 mm, respectively. Total height of plug was 14 mm. (c) Schematic 
presentation of FEA simulation scenarios.
FEA: Finite element analysis.
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AG, Munich, Germany) was performed in the supine 
position with a slice distance of 0.7 mm from 80 mm 
above the ankle joint down to the heel (130 KV, 42 mA, 
334 slices). The CT examination revealed no osseous 
lesions and deformity. A written informed consent 
for the confidential use of the imaging files received 
from the participant. The study was conducted in 
accordance with the principles of the Declaration of 

Helsinki. The 3D Slicer version 4.10.2 (3D Slicer, BWH, 
MA, USA), Meshmixer version 3.5 (Autodesk, CA, 
USA), SolidWorks 2020 (Dassault Systèmes SolidWorks 
Corp., MA, USA), and ANSYS® workbench version 17.0 
(ANSYS, Inc., PA, USA) were applied to model and 
simulate the FEA scenarios, respectively.

In the solid modeling, cortical bone, trabecular 
bone, and cartilage were separately created and 

FIGURE 3. Boundary conditions. Tibial column carries 84.3% of total body weight (BW). Since the 
participant was 98 kg, the model was loaded with 810.4 N (B) using a compressive plate (A) on 
talus (C). Loading was applied as axial compression.
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assembled. Cartilage layer was modeled based on CT 
scan images and full surface contact visualization 
for bone-to-cartilage and cartilage-to-cartilage was 
ensured to obtain a non-uniform realistic cartilage 
thickness distribution. Average thickness values of 
the articular cartilage between the tibia and talus 
varied between 0.52 and 2.85 mm in the modeling 
operation. The cartilage contact surface area between 
the tibia and talus was measured as 1120.59 mm2. 
These thickness values for articular cartilage were 
compatible within an acceptable range with the 
literature reported for articular cartilage.[14,15,18-21] The 
solid modeling details and localization of the grafting 
are illustrated in Figure 2.

An 8-mm diameter osteochondral plug was 
inserted perpendicular to the talar articular surface. 
While the first plug had the same cartilage thickness 
(1.5 mm) as the talar articular cartilage, the second 
osteochondral plug had a 2.5-mm cartilage thickness 
to mimic an osteochondral plug taken from the knee. 
In previous cadaveric studies, the lateral femoral 
trochlea's cartilage thickness was reported to be 
2.5 mm on average.[12,15,16,22] Both the plugs and the 
socket were 14 mm in length and were inserted 
press-fit similar to the ideal osteochondral grafting 
technique.

Boundary conditions and material properties

The ankle joint model was loaded in a neutral 
position to replicate a single-leg weight-bearing 
posture. The participant’s body weight (98 kg) 
was used as the reference value to calculate the 
loading magnitude. A previous biomechanical 
study reported that the tibial column carried 84.3% 
of the body weight, and the rest was carried by the 
fibular column.[23] The loading magnitude carried 
by the tibial column was calculated as 810.44 N 
(98 kg ¥ 9.81 m s-2 ¥ 0.843) (embedded gravity 
effect), and this was assigned in the simulations. 
Boundary conditions set-up in the simulation 
scenarios are illustrated in Figure 3. The contact 
definitions between components were included as 

TAbLE I
Material properties assigned in the FEA set-up in accordance with the homogenous isotropic 

linear elastic material model

Model components

Parameters Unit Cortical bone Trabecular bone Cartilage

Elastic modulus (MPa) 19100[26,27] 1000.61[28,29] 1230[31]

Poisson’s ratio ( - ) 0.3[30] 0.3[30] 0.42[31]

Density (kg m-3) 1980[30] 830[32] 431[30]

FEA: Finite element analysis.

FIGURE 4. Graph showing contact pressure, frictional 
stress, and equivalent stress on articular cartilages in each 
tested FEA scenario.
FEA: Finite element analysis.
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TAbLE II
Summary of numerical FEA outputs

FEA study code

FEA output Value FEA-001 FEA-002 FEA-003 FEA-004

Contact pressure on the surface between tibia and talus 
cartilages (MPa)

Maximum 1.677 1.708 1.653 1.683

Mean 0.669 0.690 0.674 0.665

Frictional stress on the surface between tibia and talus 
cartilages (MPa)

Maximum 0.0275 0.0280 0.0271 0.0276

Mean 0.0110 0.0113 0.0111 0.0109

Equivalent stress on the tibia cartilage (MPa)
Maximum 1.305 1.297 1.216 1.226

Mean 0.228 0.236 0.228 0.228

Equivalent stress on the talus cartilage (MPa)
Maximum 1.004 1.017 0.973 0.976

Mean 0.177 0.196 0.176 0.177

Equivalent stress on the plug (MPa) Maximum - - 8.006 7.343

Deformation on the plug (mm) Maximum - - 0.103 0.117

Deformation on the plug (Y-direction) (mm) Maximum - - 0.103 0.116

Deformation of the total body loading (mm) Maximum 0.312 0.306 0.313 0.314

Deformation of the total body loading (Y-direction) (mm) Maximum 0.301 0.296 0.302 0.303

FEA: Finite element analysis.

the frictional contact (non-linear contact) between 
the osteochondral plug and the socket and tibiotalar 
articular cartilage surfaces. Furthermore, bonded 
contact definitions were defined between cortical 
and trabecular bone and subcortical bone (frictional 
coefficient: 0.46) and the articular cartilage 
(frictional coefficient: 0.0164).[24,25]

The material properties defined in the FEA were 
collected based on the previous data in the literature. 
The material properties for cortical, trabecular, and 
articular cartilage were separately assigned under 
consideration of isotropic homogenous linear elastic 
material model assumptions (Table I).[26-32]

Mesh structure and quality verification

The mesh structure of the finite element (FE) 
has been shown to influence FEA outputs directly, 
and minimum criteria for model selection, proper 
recognition of parameters, and verification have 
been defined to achieve a precise performance 
and output.[33] To validate the current FE model 
for the predefined FEA scenarios, both mesh 
density (sensitivity) measurement and skewness 
metric (mesh quality) controls were performed. 
The mesh sensitivity analysis findings suggested 
a minimum element size of 1 mm for the tibial 
cortical and trabecular bone. Besides, for intact 
tibiotalar joint and osteochondral grafting models, 
average skewness values of 0.217 and 0.235 were 
obtained, respectively. The 1-mm element size and 

skewness values resulted in an excellent mesh 
quality for the FE models (total number of elements: 
628570, total number of nodes: 926132). As a result, 
all simulation scenarios were performed using 
an identical curvature meshing strategy. The Dell 
Precision M4800 Series (Intel Core™ i7 4910MQ 
CPU @ 2.90 GHz, NVIDIA Quadro K2100M-2GB, 
and Physical Memory: 32 GB) mobile workstation 
was employed as the solving platform.

Tibiotalar joint biomechanical evaluations

Visual outputs, numerical values of the 
equivalent stress (von Mises values), and total 
tibiotalar structure deformation distributions 
on the components, tibiotalar articular cartilage 
contact pressure, frictional stress, and contact 
pressure between all fragments were extracted 
from the simulation results and presented with 
graphs. No statistical analysis was performed, as 
the measurements obtained in FEA were absolute 
values without any variation.

RESULTS

The average contact pressure between tibial and 
talar cartilage was 0.669 MPa in the intact ankle 
joint. In the empty socket simulation, joint contact 
pressure increased to 0.690 MPa. The osteochondral 
grafting with the same cartilage thickness increased 
the contact pressure by 0.74%, relative to the intact 
ankle joint, and reached 0.674 MPa. A plug with a 
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thicker cartilage decreased the contact pressure to 
0.665 MPa (0.59%, compared to the intact ankle joint) 
(Figure 4). 

The average frictional stress between tibial and 
talar cartilage was similar in all tested scenarios. 
The summary of the results is presented in Table II. 
Under defined boundary conditions, no permanent 
deformation or damage was detected on any of 
the analyzed components (cortical bone, trabecular 
bone, and cartilage). The maximum equivalent (von 
Mises) stress values on each component were far 
less than their yield stress values (Figure 5). In 
case of a cartilage defect (FEA-002), the equivalent 
stress concentrated around the periphery of the 
defect on talar cartilage. On the contrary, reciprocal 
tibial cartilage was unloaded. In both osteochondral 
grafting scenarios, the equivalent stress values on 
tibial and talar cartilage decreased to near-normal 
values.

DISCUSSION

In the current study, we investigated the biomechanical 
effects of cartilage thickness mismatch between 
donor and recipient area in autologous osteochondral 
grafting from knee to talus. Our study results showed 
that osteochondral plugs with a relatively thicker 
cartilage layer did not cause a significant change in 
contact pressure, frictional stress, equivalent stress, 
and deformation in medially located OLT treatment, 
despite the presence of subchondral stepping. 
Based on these findings, we can speculate that 
osteochondral plugs of different thicknesses may be 
used for autologous osteochondral grafting. However, 
it should be noted that the osteochondral plug was 
inserted flush to the joint.

The importance of the flush placement of 
osteochondral plugs has been also shown in previous 
cadaveric studies. Latt et al.[9] compared joint contact 
pressures in flush, recessed (5 mm and 10 mm), and 
elevated (5 mm and 10 mm) osteochondral plugs 

FIGURE 5. Summary of visual outputs.
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using 10 human cadaveric ankles and reported that 
flush graft placement restored joint contact pressure 
near-intact values, whereas either recessed or 
elevated graft placement increased the joint contact 
pressures. Similarly, in an FEA study conducted by 
Li et al.,[34] cartilage defects deeper than 1 mm had a 
significant effect on the ankle joint contact pressure. 
However, there was no linear correlation between 
defect thickness and contact pressure over 1 mm. 
In addition to flush placement, the angle of graft 
insertion is also an important variable that affects the 
joint contact pressures. In an animal cadaveric model, 
Koch et al.[35] demonstrated that the elevated edge of 
the angled grafts led to a significant increase in joint 
contact pressures. Based on their results, the authors 
recommended both perpendicular graft harvesting 
from the recipient site and perpendicular insertion to 
the donor site to obtain optimal surface congruency.

Despite a consensus on how the grafts should be 
placed concerning height and angle in the relevant 
literature, only one previous study investigated the 
effect of cartilage thickness mismatch. In a cadaveric 
study, Fansa et al.[10] created an osteochondral defect 
at the centromedial aspect of the talar dome, and an 
autologous osteochondral graft from the ipsilateral 
knee was attempted to place flush to the defect 
site. The autologous osteochondral graft was able 
to be placed 1.0 mm below and 0.4 mm above the 
surrounding tissue with varying discrepancies, and 
persistent deficits in contact mechanics were found, 
even if optimal surface congruence was provided. 
The authors proposed that differences in material 
properties (elastic modulus, stiffness) and cartilage 
thickness might be responsible for this discrepancy. 
Our findings differ from the aforementioned study. 
As the thickness of the cartilage increased, the 
pressure absorption capacity increased; thus, it did 
not change the joint contact pressure significantly.

Furthermore, the talar and femoral cartilage have 
been shown to be different in respect to morphological, 
biological, and biomechanical properties. Treppo et 
al.[36] found that the talar cartilage was denser with 
a higher sulfated glycosaminoglycan content, lower 
water content, higher equilibrium modulus, and 
dynamic stiffness, and lower hydraulic permeability. 
Henak et al.[37] showed that femoral cartilage was 
softer than the talar cartilage, particularly near 
the articular surface, and had a lower friction 
coefficient. The aforementioned authors suggested 
that these differences could cause failure following 
osteochondral grafting from the knee to the talus 
and suggested that local grafts taken from the 
talus itself would be a more suitable option, as 

they could mimic the surface geometry and the 
biology and biomechanical properties. Although 
the most frequently used donor site for harvesting 
osteochondral plugs is the knee joint, local grafts 
may be harvested from the ipsilateral anterior part 
of the medial or lateral facets of the talus as an 
alternative.[38] This approach may decrease the donor 
site morbidity at the knee joint, reported in around 
15% of the patients. In addition, Georgiannos et al.[39] 
reported that talar osteochondral plugs had a similar 
cartilage thickness, as well as similar biological and 
biomechanical properties. However, topographic 
studies demonstrated that cartilage thickness was 
different between different joints and also within the 
same joint, which is basically related to the different 
exposure to load.[12,14]

Nonetheless, there are some limitations to this 
study. Although FEA is a valuable complementary 
method to understand the mechanical behavior of 
biological materials, it is vulnerable to various errors 
that may occur at each stage of the computerized 
analysis.[40] The simplified modeling used in this 
analysis may not fully reflect the complex anatomy 
of the ankle, including soft tissues, ligaments, and 
muscles. Several assumptions in defining material 
properties and boundary conditions were also used. 
Due to the FEA-specific constraints, the outputs 
might not have replicated real-life exactly; however, 
even the approximate results can provide significant 
information.

In conclusion, osteochondral grafts taken from 
the knee can be used in the repair of OLT without 
changing the joint biomechanics. However, harvesting 
the grafts perpendicular to the donor area and flush 
and perpendicular placement to the recipient area are 
two critical factors to obtain near-normal joint contact 
biomechanics. Further clinical studies are required to 
gain a better understanding of how these differences 
affect the functional outcomes and prognosis.
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